Real-Time Process Monitoring Accelerates Process Development and Streamlines Process Control

Marc Saunders
Director of AM Applications, Renishaw
Laser powder bed fusion (LPBF) gives us great design freedom

BUT process development and qualification can be challenging

- LPBF works at small scale and high speed
- Process anomalies can produce defects that affect fatigue life
- Iterative cycle of process parameter optimisation, part re-design & testing
- Heavy reliance on post-build testing and costly production process control

New technologies give the opportunity to detect and identify defects through process design, and possibly to repair defects during the build
Agenda

• Where do LPBF process anomalies come from?
• What are the consequences of process anomalies?
• Process monitoring sensors
• Process data analysis tools
• Detecting variations in melting conditions
• Process improvement opportunities
LPBF process overview

- Parts built up in layers
- Focused beam creates a melt pool 150-200 microns wide
- Overlaps previous scans and re-melts previous layer
- Ideally want 100% density – no pores or defects
 - Requires consistent melting conditions
 - Several failure modes can produce defects
Delivering the correct amount of energy

Process parameters control the amount of energy delivered

- Insufficient power results in **lack of fusion**
- Too much power leads to **keyhole** formation
- Too much power and speed combined leads to break-down of the weld pool – ‘**balling up**’
- **Operating window** where full melting occurs without keyhole formation

X marks the spot where we achieve full density at high build rate
Substrate temperature affects material response to laser energy

- Heat is dissipated through conduction into substrate
- Geometry of previous layers affects conduction path
- Restrictions to heat flow and thin wall geometries tend to retain heat

Increased risk of key-hole formation is these regions
Hotter substrate narrows operating window

Key-hole region expands when substrate is hot

- Less energy needed to generate a melt pool
- Optimum energy input in these regions is lower

Discoloration of down-skins

Process parameters must change to avoid over-melting
Dosing

- Re-coater wear or damage can lead to uneven dosing
- Poor powder flow can result in short dosing

Re-coater damage Start of layer End of layer
Spatter shielding

- Spatter emitted from the melt pool
- Some spatter lands on powder bed where it locally thickens the powder layer
- Laser may not fully melt extra material, leaving a lack-of-fusion pore below
Lack of fusion (2)

Irregular dosing

- Spatter particles may stand proud of the rest of the layer
- May disrupt powder spreading on next layer
- Localized short dosing leaving insufficient material to create a weld track
- Potential key-hole porosity due to excess energy penetration
Lack of fusion (3)

Laser beam disruption

- Debris on optical window can block laser energy
- Downwind processing in multi-laser machines
 - Billowing condensate
 - Airborne spatter
 - Spatter shielding

Multiple sources of porosity in builds

- Some can be **avoided through process refinement**
- Some are **endemic** and must be **detected or corrected**
Consequences of process anomalies

Fatigue failure

- Progressive phenomenon associated with initiation and growth of cracks under cyclic stresses
- Failure can occur suddenly at low stress
- Irregularities above a critical size are crack initiators
 - Rough surface
 - Key-hole pores
 - Lack-of-fusion pores
- Presence of critical defects reduces fatigue life

Can we ensure that AM parts are free from critical defects without exhaustive post-process testing?
RenAM 500Q multi-laser AM machine

Industrial AM machine with integrated real-time process monitoring

• 4 x 500W laser
• Build chamber camera for layer sensing
• LaserVIEW – laser power delivery
• MeltVIEW – melt pool monitoring
Build chamber camera

• Images of build chamber after recoating can be viewed as individual jpegs (2D only)

• **InfiniAM Visual** image analysis software with histogram showing contrast

• Identifies short dosing which could lead to defects in the finished part
Multi-sensor

High-frequency data across a range of wavelengths

- Infrared thermal sensor
- Near-IR plasma sensor
- Laser input energy

Synchronised with actual galvo mirror positions to enable 3D modelling and visualisation

InfiniAM Spectral data collection
Captures wavelengths from 700 to 1700 nm for analysis of plasma, thermal and laser emissions
• All sensors are passive and do not impinge on optical delivery path

• Processing parameters unaffected
Process monitoring data visualisation & analysis

Analysis software

- Collect and view process data live as the build progresses
- View and compare data from previous builds
- Software tools to change thresholds and reveal anomalous data
- Guide post process quality assurance techniques
- Keep records by capturing traceable process data
Process monitoring data visualisation & analysis

3D visualisation
- View whole part
- Zoom / slice
- Threshold to view hidden detail

2D layer analysis
- Investigate anomalies
- Scroll through layers to understand defect propagation

Build-to-build comparison
- Investigate anomalies
- Scroll through layers to understand defect propagation
Detecting melting variation - downskins

Bridge artefacts with horizontal overhang

- Downskin laser power varied from 10% to 100% of bulk power
- 20% of bulk power generates consistent melt pool signature
- High powers lead to significant heat build-up

Laser intensity

```
| 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% |
```

Melt pool intensity
Detecting melting variation – optical window cleanliness

Laser obscured
- Build-to-build comparison
- Persistent differences in one bed location
- Spot anomalies in first few build layers – stop & fix
Detecting melting variation – downwind melting

Laser obscured

- Downwind laser processing through upwind laser emissions
- MeltVIEW sensors respond differently
- Visible sensor exhibits more noise, with high spots corresponding to spatter particles passing through downwind laser beam
- IR sensor shows lower intensity in downwind part – less energy reaching the bed
Detecting melting variation – scan vector length

Intensity varies with vector length

- Average value of melt pool intensity plotted against vector length
- Longer vectors allow more time for previous hatch to cool before it is re-melted – lower melt pool intensity
- Shorter vectors get hotter
- Very short vectors will not form a full melt pool – data more variable
- Vector intensity could be used to locally vary laser power to produce more consistent melting
Process improvement opportunities (1)

Understand - gain insight into process performance

Record - compare and store traceable process data

Improve - check quality during the build to optimise output
Process improvement opportunities (2)

Directed CT inspection

- Comparison with known good builds to highlight anomalies
- CT scan only anomalous regions

Adapt laser power

- Adjust power to produce constant melt pool intensity
- Driven by simulation or real-time process feedback

In-layer defect correction

- Local variation detected
- Re-process defect regions at end of layer
Conclusions

- LPBF builds up parts from millions of laser exposures, each of which contribute to component quality
- Melting process exhibits inherent, rapid variation
- New real-time monitoring techniques provide necessary high-speed, high-resolution process data
- Enables traceable production and rapid process optimisation
- New process control possibilities
 - Detecting defects as they arise
 - Correcting errors in process
- Closer to the ideal of defect-free AM parts
Thank you

Renishaw.com/am-guide

Feature articles, case studies, videos, technical documents