Overview of Laser Metal Deposition Applications, Trends and Products

International Conference on Additive Manufacturing, EMO Hannover | 17. September 2019

Marco Göbel | Industry Management LMD
TRUMPF is…

Family business since 1923

Technology leader in two business divisions

Close to its customers with 77 subsidiaries

Innovation promise – holistically and constantly
Facts and Figures TRUMPF

Company Figures FY 2018/19

Sales in Mio. € 3,800 +6 %

R+D expenditures in Mio. € 337 +6 %

R+D Quota 9.5 %

Employees on June 30, 2019 ~ 14,500
01	Introduction TRUMPF
02	Laser Metal Deposition LMD
02.1	Process
02.2	Fields of Application
03	LMD for Part Modification
04	EHLA – Extremes Hochgeschwindigkeits - Laserauftragschweißen
04.1	Coating for Brake Discs
04.2	Further Applications
05	Summary & Outlook
Process – Differences LMD & LMF

<table>
<thead>
<tr>
<th>Laser Metal Deposition (LMD)</th>
<th>Laser Metal Fusion (LMF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Features</td>
<td></td>
</tr>
<tr>
<td>Geometrical Complexity</td>
<td>★★★★</td>
</tr>
<tr>
<td>Build-Up on existing workpiece</td>
<td>★★★★</td>
</tr>
<tr>
<td>Material Selection</td>
<td>★★</td>
</tr>
<tr>
<td>Build-Up Rate</td>
<td>★</td>
</tr>
<tr>
<td>Details / Precision</td>
<td>★★★★</td>
</tr>
<tr>
<td>Surface Quality</td>
<td>★★</td>
</tr>
</tbody>
</table>

- **Productive process for repair, surface functionalization and AM on free-form surfaces**
 - (free-form surface) ★★★★
 - (10 - 600 cm³ / h) ★★
 - (< 0.5 mm) ★
 - (Ra 10-20 µm) ★

- **Precise process for AM of complex workpieces in a powder bed**
 - (with preheating) ★★★★★
 - (flat substrate) ★★★
 - (2 - 180 cm³ / h) ★★★★
 - (< 0.1 mm) ★★★
 - (Ra 5-10 µm) ★★★

1 depending on system configuration, parameters, strategy and material
Fields of Application

Surface Functionalization

Enhancement of wear- & corrosion protection

Repair

Repair of tools:
Hybrid method → OKUMA

Joining Technology

Joining with powder additive:
- Gap bridging
- Joining of dissimilar materials
- 3D joining

Additive Manufacturing

Modification of parts and AM on 3D structures:
- Build-up of complete volumes
- Local reinforcements
Laser Metal Deposition
Equipment & Fields of Application

Laser Metal Deposition with TRUMPF
Fields of Application

Surface Functionalization
Enhancement of wear- & corrosion protection

Joining Technology
Joining with powder additive:
- Gap bridging
- Joining of dissimilar materials
- 3D joining

Repair
Repair of tools:
Hybrid method → OKUMA

Additive Manufacturing
Modification of parts and AM on 3D structures:
- Build-up of complete volumes
- Local reinforcements
Introduction TRUMPF

Laser Metal Deposition LMD
 02.1 Process
 02.2 Fields of Application

LMD for Part Modification

EHLA – Extremes Hochgeschwindigkeits - Laserauftragschweißen
 04.1 Coating for Brake Discs
 04.2 Further Applications

Summary & Outlook
Part Customization by LMD – Modification of Automotive Parts

LMD on Conventionally Cast Preforms

- Application oriented modification of 3D-parts for small and big parts for small – medium size production
- Economical supplement by combination of conventional and additive manufacturing
- Combination of different materials, tailored to the requirements of a given application
- Reduction of different variants → „Mass customization“
Part Customization by LMD – Modification of Automotive Parts

LMD on Conventionally Cast Preform

- Part: Suspension arm (part of a rear axle)
- Application: Local, stress optimized reinforcement of component
- Advantage: Reduction of various casting tools → reduction of costs

Scope of Production: Reduction of process time and costs by approx. 67 %
Part Customization by LMD – Modification of Automotive Parts

LMD on conventionally cast preform – 5-Axis Application

Partielles Verstärken von 3D-Strukturen
Mittels dem LMD Verfahren
EHLA – „Hochgeschwindigkeits-Laserauftragsschweißen“

Comparision: Conventional LMD – EHLA

- EHLA is a very high speed variant of the LMD process, yielding very high surface rates
- Using the EHLA-process powder particles are heated up to melting temperature before hitting the surface

Conventional LMD

- Powder particles molten on surface
- High build-up rates (volume)

EHLA

- Powder particles molten above surface
- Very high surface rates
Comparison LMD – EHLA

<table>
<thead>
<tr>
<th>Feature</th>
<th>Conventional LMD</th>
<th>EHLA</th>
<th>Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scanning speed</td>
<td>0.5 - 2 m/min</td>
<td>> 100 m/min</td>
<td>50</td>
</tr>
<tr>
<td>Surface rates</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>▪ 50 cm²/min (local build-up)</td>
<td>Up to 1000 cm²/min</td>
<td>10 – 20</td>
</tr>
<tr>
<td></td>
<td>▪ 100 cm²/min (surface)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAZ*</td>
<td>≥ 500 - 1000 µm</td>
<td>< 10 µm</td>
<td>100</td>
</tr>
<tr>
<td>Layer thickness</td>
<td>≥ 500 µm</td>
<td>≥ 50 - 250 µm</td>
<td>10</td>
</tr>
<tr>
<td>Surface roughness</td>
<td>R₂ = 100 - 200 µm</td>
<td>R₂ = 10 - 20 µm</td>
<td>10</td>
</tr>
</tbody>
</table>

* Typical values. Heat input can be reduced and adapted; enabling new material combinations and properties, which are considered to be not conventionally achievable (e.g. Ti on steel, defect free coatings on cast iron).

Significant increase in productivity for coating of rotational symmetric parts.
Fine Dust in Cities – A Very Actual Problem in Stuttgart
37% Fine Dust Originates from Abrasion of e.g. Brake Discs
EHLA for Brake Discs

New Coatings with State of the Art Coating Technology

- Coating System (corrosion- and abrasion resistant) using Cermets
- Challenge for conventional welding and LMD: cast iron. Graphite in lamellas enhance brittle phases, which can cause cracking within coating and substrate.
- By use of EHLA a minimized thermal energy input and dilution into workpiece is feasible, therefore significant reduction of brittle phases and risk of cracking

Coated Brake Disc (felt).
Quelle: TRUMPF, Fraunhofer ILT

Cross section of Cermet: WC-Carbides in Ni-Matrix. Substrate is cast iron (right).
Further Applications for EHLA

<table>
<thead>
<tr>
<th>Industry</th>
<th>Part</th>
</tr>
</thead>
<tbody>
<tr>
<td>Printing industry</td>
<td>Feed-, print rolls, etc.</td>
</tr>
<tr>
<td>Machine- & Toolbuilder</td>
<td>Components of hydraulics; e.g. lifters, pistons, vibration dampers, etc.</td>
</tr>
<tr>
<td>Automotive</td>
<td>Brake disc, valves, piston rings, etc.</td>
</tr>
</tbody>
</table>

EHLA – Hochgeschwindigkeits-Auftragschweißen
Beschichten mit >100m/min
Introduction TRUMPF

Laser Metal Deposition LMD
- 02.1 Process
- 02.2 Fields of Application

LMD for Part Modification

EHLA – Extremes Hochgeschwindigkeits - Laserauftragschweißen
- 04.1 Coating for Brake Discs
- 04.2 Further Applications

Summary & Outlook
Typical Powder Additives for LMD

Outlook – Next System Technology

Fe-base
- High Hardness
 - Typ. 800 – 1100 HV / 62,5-74,5 HRC

Co-base
- Good corrosion resistance
- High max. temperatures
 - Typ. 600°C

Ni-base
- Good wear properties
- High max. temperatures
 - Typ. 600°C

Al-base
- High thermal conductivity

Cu-base
- High thermal conductivity

Typ. 600°C
Outlook – LMD of Cu-Alloys

Absorption as Function of Laser Wavelength

By use of green laser radiation an >30% increase of absorption feasible

Overview:
coating of cuboid

Detail:
- Cu9.5Al (see above)
- Cu11Sn
- CuZn31Si1

![Graph showing absorption as function of laser wavelength](image)

Legend:
- TruDisk: 515 nm
- TruDisk IR: 1030 nm
- Cu

Marco Göbel | Brachenmanagement LMD | 17. September 2019
Green High-Power Lasers by TRUMPF
Current Laser Sources & Future Laser Sources

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Pulsed</th>
<th>CW</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TruDisk Pulse 421</td>
<td>TruDisk 1020</td>
</tr>
<tr>
<td>Pulse peak power</td>
<td>4 kW</td>
<td>1 kW</td>
</tr>
<tr>
<td>Average power</td>
<td>400 W</td>
<td>1000 W</td>
</tr>
<tr>
<td>Wavelength</td>
<td>515 nm</td>
<td>515 nm</td>
</tr>
<tr>
<td>Pulse duration</td>
<td>0.3 … 50 ms</td>
<td>cw</td>
</tr>
<tr>
<td>Max. Pulse energy</td>
<td>40 J</td>
<td>---</td>
</tr>
<tr>
<td>Repetition rate</td>
<td>< 1000 Hz</td>
<td>---</td>
</tr>
<tr>
<td>LLK diameter</td>
<td>≥ 100 µm</td>
<td>≥ 50 µm</td>
</tr>
<tr>
<td>No. of outputs</td>
<td>max. 2</td>
<td>max. 2</td>
</tr>
<tr>
<td>BPP</td>
<td>4 mm·mrad</td>
<td>2 mm·mrad</td>
</tr>
</tbody>
</table>
Summary – Trends & Challenges for LMD

Process Development

EHLA
Will become much stronger, but still new in market…

AM by LMD
Driven by CAD/CAM; predominantly for modification

Continuously: Repair & Coating
For molds, casts, aerospace and medical applications

Industry 4.0

Automatization and inter-machine networks
incl. a look into the overall process chain

Productivity

- Increase of laser power (also in “green”)
- New optics and system technology
- Automatization

Software

CAM-software and simulation tools for machine and part

Quality Assurance

- Powder: mass, flow & focus
- Laser beam properties
- Process monitoring & control
- In-situ check of quality

Marco Göbel | Brachenmanagement LMD | 17. September 2019
Thank You for your kind attention
Vielen Dank für Ihre Aufmerksamkeit

Marco Göbel
Branchenmanagement LMD