CECIMO WEBINAR
Additive Manufacturing: An opportunity to fill the gaps in traditional supply chains

Thursday 2nd of July, 11.00 am - 12.10 pm
Embedding AM into industrial value chains

Dr. Bernhard Mueller
Fraunhofer Additive Manufacturing Alliance
Additive Manufacturing at Fraunhofer: One topic – twenty institutes – one alliance

- **Engineering**
 to invent and design new products and develop suitable process chains
- **Materials**
 to adapt new materials
- **Technologies**
 to achieve (cost-)efficient processes
- **Quality**
 to control and ensure manufacturing reproducibility and product quality
- **Software and simulation**
 to develop intelligent algorithms apply simulation efficiently

Contact: Dr. Bernhard Mueller
bernhard.mueller@iwu.fraunhofer.de
Fraunhofer vs. Corona: Providing 3D printed face shields to first responders

- Johanniter Unfall-Hilfe (German St. John’s Order) asked for 5,000 face shields for training purposes
- AM network Medical goes Additive (MGA) supported Johanniter’s call for help within its initiative “3D Printing fights Corona”
- Fraunhofer AM Alliance manufactured and donated 550+ of the 5,000 face shields
- 6 Alliance member institutes involved: EMI, IAPT, IGCV, IPA, IPT, IWU
- FFF and SLS technologies used to 3D print the face shields

»This work was supported by the Fraunhofer Internal Programs under Grant No. Anti-Corona 072-600101«
Sources: Fraunhofer IML, Ruhrlandklinik Essen

Fraunhofer vs. Corona: Providing 3D printed face shields to first responders

- Fraunhofer IML re-engineered open source file for face shields to optimize it for polymer laser sintering
- Production increase from 60 to 500 face shield components in one print job
- Production of clear visors with laser
- Fraunhofer IML manufactured (in cooperation with FH Dortmund) 1500 face shields for local hospitals and doctors

Contact: Mathias Rotgeri
mathias.rotgeri@iml.fraunhofer.de
Lighthouse Project Future AM: Project overview

Digitization of additive manufacturing along the entire process chain

Extensive automation of post processing

Increase of build rate and component size and in-process monitoring

Increase of material diversity and multi-material processing
Lighthouse Project Future AM: Project Challenges in post processing

Process chain of additive manufacturing of metal components

- Post processing causes up to 70% of the overall component costs

- High percentage of manual work
 - for component removal
 - for removal of support structures
 - for mechanical post processing

- Missing integration in industrial manufacturing environments and process chains
Lighthouse Project Future AM: Automated post processing

Aim

- Reduction of personnel costs by 50%
- Reduction of production time by 50%
- Reduction of post processing costs by 70%

Modular autonomous manufacturing cell with technology modules for

- Powder removal
- Handling with robotics
- Component identification
- Cutting
- Optical dimensional measurement
- Mechanical post processing

Process chain

Contact: Florian Lehmann
florian.lehmann@iwu.fraunhofer.de
Lighthouse Project Future AM: Component identification

Motivation
- Disbanding rigid process chains requires clear allocation between component and production parameters
- Traceability in different industry sectors required or mandatory
- Clear identification protects from product piracy

Solution approach
- Use of manufacturing possibilities to integrate a codification inside the component

Process Planning and codification
Reading of the code by different non-destructive measurement methods
Signal evaluation, decoding, data assignment
Lighthouse Project Future AM: Chosen identifiers and non-destructive readout methods

1D Barcode, Pharmacode [456]

2D UDI Barcode, Datamatrix [658942]

- Eddy current (EC)
- Ultrasound (US)
- X-ray (Micro CT)

Demonstrator Hip stem long

Contact: Markus Oettel markus.oettel@iwu.fraunhofer.de
Fraunhofer vs. Corona: MobiMed – Development of a mobile production line for medical equipment and facilities in crisis regions

Data management
- Easy to use ordering system
- Order catalogue for common medical products
- Provision of variants

On-site production
- Process chain for plastic components
- User support by Augmented Reality (AR)
- 20ft container format for maximum versatility

Quality assurance
- Part traceability by QR-codes
- AR-supported part check
- Sterilization and packaging

Supply chain for medical equipment with high criticality

»This work was supported by the Fraunhofer Internal Programs under Grant No. Anti-Corona 179-640001«

Contact: Dr. Philipp Imgrund philipp.imgrund@iap.fraunhofer.de
IDEA – Industrialization of Digital Engineering and Additive Manufacturing

Digital Engineering
- Design & Modelling
- Process Parameters
- L-PBF Process
- De-Powdering
- Heat Treatment
- Baseplate Separation
- Conventional Machining
- Surface Finishing
- Quality Control

Industrialization

Description
- In the additive process chain, individual process steps are currently mostly isolated and associated with a large number of manual operations.
- In the project, the basics of industrialization (data preparation, machine setup, etc.) are developed for all process steps, so that individual process steps can be integrated in one production line.

Focus of Fraunhofer IPT
- Concept for automated component handling
- Software tool for CAM planning for removing support structures
- Software for process chain evaluation depending on the component design

Target
- Realization of a fully integrated, automated production line

12

Support Code: 13N15001
IDEA – Focus of Fraunhofer IPT

Automation
- Automation concepts for component handling
 - Analysis of the existing processes and hardware
 - Development of a holistic methodology
 - Generation and simulation of automation concepts

Support structure removal
- Software for removal of support structures
 - Simulation of contact conditions
 - Execution of physical milling investigations
 - Development of material removal simulation

Process chain evaluation
- Software for automated process chain evaluation
 - Formal description of technologies and parameters
 - Development of framework for data acquisition
 - Development and implementation of decision logic

Source: Fraunhofer IPT
Contact: Moritz Wollbrink
moritz.wollbrink@ipt.fraunhofer.de
POLYLINE – Integrated line application of polymer-based AM technologies

Description

- Vertical and horizontal integration of AM processes in conventional lines can only be implemented to a limited extent due to the lack of standards across process chains.
- Reason: AM-specific production steps ("batch process") and low level of automation of the physical handling and transport processes.
- Digital data chain is not continuous, which currently leads to intransparency, error-proneness and limited monitoring.

Target

- Equivalent to the IDEA project with its focus on metal-based AM, the POLYLINE project focuses on the automation and integration of laser sintering of polymers along the entire process chain.

Source: Fraunhofer IML
POLYLINE – Focus of Fraunhofer IML and IGCV

Integration:
- Development of an integration concept:
 - Integration of all process steps into an optimized AM process
 - Integration of the AM process into conventional production environments

Material flow:
- Flexible linking of process steps is a prerequisite for successful automation of an AM-line
- The entire material flow is considered
 - transport of exchangeable frames, components and powder
- Implementation of concepts in cooperation with consortium partners

Digital process chain:
- Focus on digital process chain in additive order processing
- Concept for optimal production planning and control of the POLYLINE is being developed
- Concept will be tested for scalability in a simulation

Quality and technical cleanliness:
- Analysis and optimization of the areas of component cleaning and finishing
- IGCV develops cleaning process chains to close process-related gaps
- Target is to increase resource efficiency and product quality

Contact: Mathias Rotgeri
mathias.rotgeri@iml.fraunhofer.de

POLYLINE
Integrated production line of polymer-based AM applications
Thank you for your attention!

Dr. Bernhard Mueller
Spokesman
Fraunhofer Additive Manufacturing Alliance
c/o Fraunhofer IWU
Noethnitzer Strasse 44
01187 Dresden (Germany)
phone +49 351 4772-2136
Bernhard.Mueller@iwu.fraunhofer.de
http://www.generativ.fraunhofer.de